

SMALL INTESTINE

Good Morning

DR.CHARUSHILA RUKADIKAR

SMALL INTESTINE

- Functional anatomy
- Secretions composition, regulation, function
- Motility of SI-

- Interdigestive period
 - Digestive period
 - Reflexes

- Function
- Applied aspect

Functional Anatomy

Divided into duodenum, jejunum & ileum 6 mt long and absorptive area 250m²,

- >Mucosal folds plicae circularis/valvulae conniventes increased surface area, slow down passage of food to facilitate absorption
- ➤ Villi 0.5 1 mm finger like projection. Covered by columnar cells. Core contains an arteriole, venule and lymphatic vessel (lacteal), smooth muscle, nerves connected to myentric plexus
- ➤ Microvilli on enterocyte surface, depressions k/a crypts of lieberkuhn tubular glands containing goblet cell, argentaffin cell, paneth cells

Functional Anatomy contd.

Functional Anatomy contd.

Epithelial cells -

- Enterocytes absorptive columnar
- Undifferentiated columnar cell at crypts
- Goblet cells secrete mucus
- Argentaffin/Enterochromaffin secrete serotonin (5-HT)
- Paneth/zymogen cells- secrete lysozyme
- Duodenal glands of Brunner mostly near pylorus, secrete mucous and HCO3- - neutralizes acidic chyme

Succus Entericus

Composition

- Aqueous component (water & electrolytes)
- Intestinal Enzymes
- Mucus

- 1) Aqueous component -
- Water and electrolytes
- > 2 lit per day
- Secreted by enterocytes specially at crypts
- Composition same as ECF but Alkaline (pH = 7.5-8.6)
- > Function solvent

- 2) Intestinal Enzymes -
- Peptidases split peptides to amino acid e.g. aminopeptidases, dipeptidases, nuclease
- Disaccharidases split sucrase, maltase, lactase to monosaccharides
- Intestinal Lipases split triglycerides
- > Enterokinase activates trypsiogen

3) Mucus secreted by

Brunner's glands - secrete alkaline mucus - prevents acidic chyme from damaging duodenal mucosa

Goblet cells - secrete mucus and lubricate chyme

Succus Entericus

Composition

- Aqueous component (water & electrolytes)
- Intestinal Enzymes
- Mucus

Regulation of secretion

- Local stimuli mechanical distension/irritation of intestinal mucosa - increase secretion- via myentric reflexes -
- Vasoactive Intestinal Peptide (VIP) secreted by crypts - increases secretion
- Secretion of Brunner's glands increased by -
- Vagal stimulation
- Mechanical stimulation/irritation of duodenal mucosa
- Secretin

Small Intestine Motility

- A)Motility during interdigestive period MMCs
- B) Motility during digestive period -
- Mixing movements
 - a) Segmentation contractions

b) Pendular movements

- > Propulsive movements
 - a) Peristaltic contraction

b) Peristaltic rush

- Movements of Villi
- C) Reflexes
 - a) Gastroileal reflex

b)Intestinointestinal reflex

A) INTERDIGESTIVE PERIOD MOTILITY- MMC

- Wave begin in oesophagus and travel through entire
 GIT during interdigestive period.
- Occur every 60-90 min last for 10 min
- Close correlation BER and MMC
- Increase in gastric secretion, bile flow and pancreatic secretion.
- Interdigestive housekeeper
- Motilin increases strength of MMC
- Ends with food entry in stomach

B) MOTILITY DURING DIGESTIVE PERIOD

I) Mixing movement-

- a) Segmentation contractions -
- Rhythmic & occurs throughout digestion
- Section of intestine contracts (2-5cm) sending the chyme in both directions then relaxes bringing chyme back, adjoining part simultaneously contracts
- Chain of sausage appearance
- Rate is 12/min in duodenum, 8/min in ileum
- Produces thorough mixing

Small Intestine Motility contd.

© Brooks/Cole - Thomson Learning

o TYPES-

- Eccentric contractions less than 2 mm, outer smooth muscle layer
- Concentric contraction- more than 2 mm, inner smooth muscle layer

Control-

- Initiation membrane potential depolarization- spike- segmentation
- Pacemaker cell located in 2nd part duodenum
- Strength- proportional to frequency, amplitude of spike
- Amplitude increased by gastrin, CCK, motilin, insulin
- Amplitude decreased by secretin, glucagon

Function-

- Back and forth movement of chyme= through mixing
- Slow down transit time in small intestine, increase contact time for absorption

Small Intestine Motility contd.

b) Pendular Movements

Small constricting waves which move forwards & backwards or upwards & downwards

II) PROPULSIVE MOVEMENT

Pushing chyme towards aboral end of intestine.

- a) Peristaltic contraction -
- Contraction behind the bolus and relaxation ahead
- Vermiform movements- 0.5 cm/sec, chyme moves 1cm/min
- Follow **law of gut-** wave travel from oral end to aboral end.
- Polarity of intestine/ polar conduction of intestine/electrical activity of intestine/theory of receptive relaxation- **Starling**

Fig. 7.5-5 Peristaltic contraction moves the food through intestine by pushing bolus ahead of muscle contraction.

FUNCTION-

- Help in propulsion, digestion and absorption of food
- Executed by myentric plexus stretch releases serotonin myentric plexus - ACh, substance P cause contraction behind & NO, VIP, ATP cause relaxation ahead of bolus.

CONTROL

- Stimulus- distention
- Myentric reflex- wall stretched- wave initiated- pass to rectum 2-2.5 cm/sec. Serotonin facilitate
- Ach, Sub P- Circular contraction
- ✓ NO, VIP, ATP Relaxation
- ✓ **Neural** Parasympathetic increase via vagus and sympathetic decrease motility.
- Hormonal Gastrin, CCK, 5-HT, thyroxine, insulin increase and secretin, glucagon decrease intestinal motility

b) Peristalstic Rush

- Powerful peristaltic contractions due to irritation of intestinal mucosa e.g. in infectious diarrhoea
- Start from duodenum to ileocaecal valve sweep entire contents of small intestine into large intestine within few minutes
- Extrensic nervous reflex and myenteric reflex

III) Movements of Villi

- Alternate contraction & relaxation
- > Villikinin secreted by SI mucosa
- Function- Help in emptying lymph from central lacteal in lymphatic system
- During elongation of villi surface area increases improves absorption from lumen

C) MOTILITY REFLEX

a) Gastroileal reflex

- Distension of stomach marked increase in peristalsis in ileum and relaxation of ileocaecal valve
- Intestinal contents delivered to large intestine
- Peristaltic contractions due to vagal stimulation
- Relaxation of ileocaecal valve due to gastrin

b) Intestinointestinal reflex

Overdistention of one segment of intestine leads to relaxation of rest of intestine

Functions of small intestine

- Mixing of food with digestive juices & propulsion
- Digestion by succus entericus, pancreatic enzymes and bile
- Absorption through portal system or lymph
- Secrete GI hormones enterogastrones, CCK
- Enterokinase activates trypsinogen to trypsin
- Mucus protects against acidic chyme
- Aqueous part of succus entericus provide medium for digestion & absorption

Applied

Paralytic ileus/ Adynamic ileus

- Intestinal motility markedly decreased retention of contents
- Irregular disension of small intestine by pockets of gas & fluid
- Causes Surgery, Trauma, Peritonitis
- Symptoms Nausea, vomiting, abdominal discomfort, abdominal distension
- Diagnosis No bowel sounds on listening with stethoscope
- Treatment IV fluids, antiemetics, observation

Intestinal obstruction-

- Causes- Tumor, fibrotic bands
- Symptoms- abdominal pain
- Treatment- surgery

SMALL INTESTINE SUMMARY

- Functional anatomy
- o Plica circularice, folds, villi, microvilli, crypt- cells
- Secretions composition, regulation, function
- Motility of SI-
- Interdigestive period –MMC
- Digestive period- MIXING, PROPULSIVE, VILLI
- Reflexes
- Function
- Applied aspect

Thank you

DR.CHARUSHILA