Renal handling of substances

Dr.Charushila Rukadikar
Assistance Professor
Physiology

GENERAL PRINCIPLES OF RENAL TUBULAR TRANSPORT

- Transport mechanisms across cell membrane
- 1) Passive transport
- i. Diffusion
- ii. Facilitated diffusion (channels, uniport, coupled transport, uniport or symport)
- iii. Solvent drag.

2) Active transport

I. Transepithelial transport pathways

- A. Transcellular pathway
- Transport through cells.
- Example: Na+ reabsorption by PT in two-step

1. Movement of Na+ into cell across apical membrane occurs down an electrochemical gradient established by Na+-K+-ATPase.

2. Movement of Na+ into extracellular fluid across basolateral membrane occurs against an electrochemical gradient via Na+-K+-ATPase.

- II. Paracellular pathway
- Transport between cells.
- Examples
- 1. Reabsorption of Ca2+ and K+ across PT
- 2. water reabsorbed across PT
- Some solutes dissolved in this water (Ca2+, K+) by solvent drag

Tubular reabsorption

- Active transport of solutes & passive movement of water from tubular lumen into peritubular capillaries.
- Removal of substances of nutritive value, such as glucose, amino acids, electrolytes (Na+, K+, Cl-, HCO3-) and vitamins from the glomerular filtrate.
- Small proteins ,peptide hormones are reabsorbed in PT by endocytosis.

Tubular secretion

- Transport of solutes from peritubular capillaries into tubular lumen
- It is addition of a substance to glomerular filtrate.
- Take help of certain non-selective carriers.
- Carrier which secretes PAH can also secrete uric acid, bile acids, oxalic acid, penicillin, probenecid, cephalothin and furosemide.

Renal clearance

- Volume of plasma that is cleared of a substance in 1min by excretion of substance in the urine.
- PAH > K+ (high K+ diet) > Inulin> Urea > Na+ > Glucose, amino acids and HCO3–

Patterns of renal handling of a substance

1. Glomerular filtration only (e.g. inulin)

- Glomerular markers
- Renal clearance equal to GFR.

2. Glomerular filtration f/b partial reabsorption

Substances have renal clearance less than GFR.

3. Glomerular filtration followed by complete tubular reabsorption

- Substances have lowest renal clearance, e.g. Na+, glucose, amino acids, HCO3-,Cl-.
- Substances that are not filtered at all (e.g. protein)

4. Glomerular filtration f/b tubular secretion

 Substances that are both filtered & secreted have highest renal clearances (e.g. PAH).

5. Glomerular filtration f/b partial reabsorption & secretion

- Which processes is dominant
- Net absorption = substance excreted is less than GFR
- Net secretion = substance excreted is more than GFR

6. No glomerular filtration, no absorption, only secretion

- Many organic compounds are bound to plasma proteins therefore unavailable for ultrafiltration.
- Secretion is thus their major route of excretion in urine.

Renal tubular transport maximum (Tm)

- Maximal amount of a solute that can be actively transported (reabsorbed or secreted) per min by renal tubules.
- Tm = solutes that are actively transported
 E.g. Phosphate Ion, Sulphate, Glucose, Amino Acids, Uric Acid, Albumin, Acetoacetate,β-hydroxybutyrate, B-ketoglutarate
- No Tm =Substances that are passively transported
 E.g. Urea, Reabsorption of Na+ & HCO3-
- Threshold conc. = plasma conc. at which substance first appears in urine.

Tubular fluid concentration (TF)/plasma concentration (Px) ratio

- Compares conc. of substance in tubular fluid at any point along nephron with its conc. in plasma.
- Micropuncture technique.
- Micropipette inserted into Bowman's space & different portions of tubules of living kidney in experimental animals
- 2. Composition of aspirated tubular fluid is determined by microchemical techniques.

Significance of TF/Px ratio

TF/Px ratio of 1.0

- No reabsorption or
- Reabsorption of substance = Reabsorption of water.

TF/Px ratio < 1.0

- Reabsorption of a Substance > Reabsorption of water
- Its Conc. in tubular fluid < plasma conc.

TF/Px ratio of > 1.0

- Reabsorption of substance <
 Reabsorption of water
- Secretion of substance.

TRANSPORT ACROSS DIFFERENT SEGMENTS OF RENAL TUBULE

Reabsorption		Non-	Secretion	
Active	Passive	reabsorption	secretion	
Proximal tubule				
Na ⁺	CF	Inulin	H*	
K ⁺	HCO ₃	Creatinine	Water	
Ca ²⁺	HPO ₄	Sucrose	Penicillin	
Mg ²⁺	Water	Mannitol	Sulphonamide	
HPO ₄	Urea		Creatinine	
SO ₄ ²⁻			Urate	
NO3			Water	
Glucose				
Amino acids				
Protein				
Urate				
Vitamins Acetoacetate				
β-hydroxybutyrate				
Henle's loop				
Na ⁺	CI-			
K ⁺	HCO ₃			
Ca ²⁺	Water			
Distal tubule and collecting duct				
Na*	CIT		K+	
Ca ²⁺	HCO ₃		H*	
Mg ²⁺	Water			
Water				

Transport across PT

PT reabsorbs:

- 1. 67% of filtered water, Na+, Cl-, K+ & other solutes.
- 2. All glucose & amino acids filtered by glomerulus.
- 3. PT does not reabsorb inulin, creatinine, sucrose & mannitol.
- 4. PT secretes H+, PAH, urate, penicillin, sulphonamides & creatinine.

Transport across LOH

- 1. 20% of filtered Na+ and Cl-,
- 15% of filtered water & cations, such as K+, Ca2+ and Mg2+ reabsorbed in LOH

Transport across DT & CD

- 7% of filtered NaCl and about 8–17% of water is reabsorbed
- 2. K+ & H+ are secreted

1.RENAL HANDLING OF SODIUM AND WATER

- 1. PT:67%
- 2. LOH (mainly thick: 20% ascending limb)
- 3. DT: 7%
- 4. Cortical CD: 5%

1. Reabsorption in proximal tubule

Isosmotic

Mechanisms of Na+ reabsorption

a) In early PT

- Co transport with H+/organic solutes (glucose, amino acids, phosphate and lactate)
- Two-step process
- i. Across basolateral membrane-
- Na+ moves against electrochemical gradient via
 Na+-K+-ATPase pump, which pumps Na+ into paracellular spaces & lowers intracellular Na+ conc.
- ii. Across apical membrane
- Sodium moves down electrochemical gradient
- antiporter & symporter

Fig. 6.2-7 Mechanism of reabsorption of sodium and other solutes across early proximal tubule.

Na+-H+ antiporter

- Main determinant of Na+ & H2O reabsorption in PT.
- Na+-H+ exchange is linked directly to reabsorption of HCO3-.
- Carbonic anhydrase inhibitors (e.g. acetazolamide)
- Early PT by inhibiting reabsorption of filtered HCO3-.

Na+-glucose (and other organic solutes) symporter

- Establishes transtubular osmotic gradient that provides driving force for passive absorption of water by osmosis.
- Because more water than Cl– is reabsorbed in early segment of PT,
 Cl– conc. in tubular fluid rises along length of the early PT

- b) In late PT
- 1. Chloride-driven sodium transport both transcellular & paracellular pathways
- Reabsorption via paracellular pathway.

Fluid entering late PT contains very low glucose, a.a. & HCO3- but contains a high conc. of Cl- (140 mEq/L) (In early PT 105 mEq/L).

Creates conc. gradient which favours diffusion of Cl– from lumen into lateral intercellular space across tight junctions

Tubular fluid to become positively charged relative to blood.

Diffusion of Na+ across tight junctions into blood.

- Luminal membrane of late PT –
- 1. Na+-H+ & one or more Cl- anion (formate) antiporters

- Across basolateral membrane
- Na+ leaves cell –
 by Na+-K+-ATPase pump
- 2. Cl– leaves –by K+–Cl– co-transporter

2. Reabsorption in LOH

Thin descending limb of LOH

- Water absorption occurs passively (because of hypertonic interstitial fluid)
- Diffusion of sodium ions from interstitial fluid into tubular lumen.

Thin ascending limb of LOH

- Water-impermeable limb.
- Because of this, fluid leaving this limb is hypotonic

Thick ascending limb of LOH

- Impermeable to water
- Reabsorption of 20% of the filtered Na+, Cl– and other cations.
- Half Na+ is reabsorbed actively and transcellularly
- Other half of Na+ is reabsorbed passively by paracellular pathway along with other cations.

Basolateral membrane

Na+, K+-2Cl- symporter-mediated active transport of Na

Na+-K+-ATPase in basolateral membrane
 (extrudes Na+ & lead to low intracellular Na+ conc.)

Chemical gradient is created which favours movement of Na+ from lumen into cell.

2. Due to presence of 'tight', Na+ is unable to leak back into tubule to produce a luminal potential

However, some of K+ which enters cell leaks back across apical membrane into tubular lumen, generating a lumen-positive transepithelial potential difference of +6 to +10 mV.

Apical membrane

- Na+-K+-2Cl- symporter
- Downhill movement of Na+ & Cl-, drives the uphill movement of K+ influx.
- loop diuretics (e.g. furosemide, ethacrynic acid) inhibit it.

Fig. 6.2-9 The active (transcellular) and passive (paracellular) transport mechanism operating across the tubular cells in thick ascending limb (TAL) of loop of Henle.

- Na+-H+ antiporter-mediated active reabsorption of sodium also occurs transcellularly leading to H+ secretion (HCO3 – reabsorption)
- Paracellular passive reabsorption of Na+, K+, Ca2+ and Mg2+ is function of voltage across thick ascending limb.
- Because of unique location of transport proteins in apical & basolateral membranes, tubular fluid is positively charged relative to blood.
- Increased salt reabsorption by thick ascending limb increases magnitude of positive charge in lumen, which plays a major role in driving passive paracellular reabsorption of cations

3. Reabsorption across distal tubule

Early distal tubule

- Reabsorbs Na+, Cl-
- Impermeable to water
- Dilution of tubular fluid
- So called cortical diluting segment.
- Apical membrane Na+-Cl- symporter
- Basolateral membrane –
 Na+ leaves cell via Na+-K+-ATPase
 & Cl- leaves cell by diffusion

Thiazide diuretics reduce NaCl reabsorption of Na⁺ and Cl⁻ in by inhibiting Na+-Cl- co-transport. (See text for details).

Late distal tubule and collecting duct

- Principal cells & intercalated cells
- Principal cells reabsorb Na+, Cl- and H2O and secrete K+
- 1. Na+ reabsorption.
- Na+-K+-ATPase across basolateral membrane.
- Apical membrane diffusion due to chemical gradient.
- 2. Cl-reabsorption
- Paracellular pathway.
- Cl- is driven by lumen-negative charge generated by diffusional influx of sodium.

- 3. H2O absorption
- ADH increases H2O permeability by directing insertion of H2O channels in luminal membrane of principle cell
- In absence of ADH, principal cells are impermeable to water.
- 4. K+ secretion.
- K+ uptake across basolateral membrane via Na+-K+-ATPase f/b diffusion

Fig. 6.2-11 Mechanism of transport in principal cells and intercalated cells of the late distal tubule and collecting duct. CA = Carbonic anhydrase.

Role of aldosterone on principal cell

- Aldosterone increases Na+ reabsorption and increases K+ secretion.
- It takes several hours
- About 2% of overall Na+ absorption is affected by it.

Role of aldosterone on Intercalated cells

- Reabsorb K+ and secrete H+.
- Aldosterone increases H+ secretion by intercalated cells by stimulating H+-ATPase

Table 6.2-3	Summary of mechanism of Na ⁺ absorption across different segments of renal tubule			
Segment of the tubule	Absorption active/passive/ impermeable	Mediated by		
Proximal tubule				
Early proxim rubule		 Na+, K+ antiport Na+—glucose (and other organic solutes) symport 		
Late proximo tubule	al Active	 Cl⁻ driven Na⁺ πansport 		
Loop of Henle				
Descending to segment (DT: Ascending the segment (AT:	5) in interstitium in Passive	1		
Thick ascend limb (TAL)	ing Acrive (Transcellular)	Na+-K+-2CI- symporter Na+, H+- antiporter		
Distal tubule and collecting duct				
Early distal to Late distal tobule and collecting du (Principal cel	Active	 Na⁺, Cl⁻ symport Regulated by aldosterone 		

II. Water reabsorption

- Osmosis
- Aquaporins
- Aquaporin-1, 2, 5, 9- present in the kidney.

PT-

Passively reabsorbed (67%).

LOH -

- ✓ Descending thin segment : Passively reabsorbed (15%)
- ✓ Ascending thin segment : Impermeable
- ✓ Thick ascending limb : Impermeable

DT & CD - (8-17%)

- ✓ Distal convoluted tubule : Impermeable
- ✓ Connecting tubule (CNT) : Impermeable
- ✓ Cortical CD : Reabsorbed (ADH)
- ✓ Outer & inner medullary CD : Reabsorbed (ADH)

Obligatory reabsorption. (MUST)

- About 85% of filtered water is always reabsorbed, irrespective of body water balance.
- This reabsorption occurs by osmosis in response to a transtubular osmotic gradient
- 67% of obligatory reabsorption occurs in PT and 15–18% of obligatory in descending thin segment of LOH.

Facultative reabsorption. (OPTIONAL)

- Remaining 15–18% of water may or may not be absorbed depending upon body water balance.
- Occurs in CD (under control of ADH)

Fig. 6.2-9 The active (transcellular) and passive (paracellular) transport mechanism operating across the tubular cells in thick ascending limb (TAL) of loop of Henle.

Regulation of K+ tubular secretion

1. Plasma K+ level

- Hyperkalaemia -High K+ diet or rhabdomyolysis stimulates K+ secretion within minutes.
- Hypokalaemia- low K+ diet or diarrhoea, decreases K+ secretion

Aldosterone.

- Hyperkalaemia & angiotensin II Aldosterone secretion increased
- Hypokalaemia & ANP- Aldosterone secretion is decreased

Chronic rise in aldosterone level Increases K+ secretion by principal cells

Mechanisms

1. By increasing Na+-K+-ATPase activity.

leads to increased pumping of Na+ out of cell at basolateral membrane &

Increased Na+ entry into cells across luminal membrane.

- By making transepithelial potential difference (TEPD) more lumen negative.
- 3. By increasing permeability of apical membrane to K+

3. Glucocorticoids

- Indirectly work
- Increase K+ excretion by increasing GFR which increases tubular flow which increases K+ secretion.

4. ADH

- Increases Na+ & water reabsorption
- ➤ ADH-induced increased Na+ uptake across luminal membrane creates an electrochemical gradient which increases K+ secretion into lumen
- Decreases tubular flow which in turn decreases K+ secretion
- Inhibitory effect + stimulatory effect = maintained constant level despite wide fluctuations in water excretion.

5. Flow of tubular fluid.

- Increase flow –
 Increases K+ secretion rapidly,
- Decrease flow –
 Decreases secretion of K+ by DT & CD

6. Acid-base balanceK+ secretion affect by DT & CD

Acute acidosis reduces K+ secretion by

1. By decreasing Na+-K+-ATPase activity across basolateral membrane

It reduces intracellular K+ Conc.

- Reduces electrochemical driving force for K+ exit across apical membrane.
- 2. By reducing permeability of apical membrane
- It decreases K+ secretion & tends to increase intracellular K+ Conc.

Net result = K+ constant

Acute alkalosis : opposite effects