Glomerular filtration I

DR.CHARUSHILA RUKADIKAR Assistant Professor Physiology

GFR

- 1. Definition
- 2. Normal value
- 3. Variation
- 4. Calculation (different pressures acting on glomerular membrane)
- 5. Factors affecting GFR
- Regulation of GFR
- 7. Measurement of GFR

QUESTIONS

LONG QUESTION

- 1. GFR
- 2. RENIN ANGIOTENSIN SYSTEM

SHORT NOTE

- 1. DYNAMICS OF GFR
- 2. FILTRATION FRACTION
- 3. ANGIOTENSIN II
- 4. FACTORS AFFECTING GLOMERULAR FILTRATION RATE
- 5. REGULATION OF GFR
- RENAL CLEARANCE TEST
- 7. MEASUREMENT OF GFR

Collecting duct epithelium

o P Cells -

Tall, predominant, have few organelles, Na reabsorption & vasopressin stimulated water reabsorption

o I cells-

CT and DCT, less, having more cell organelles, Acid secretion and HCO3 transport

CHARACTERISTICS OF RENAL BLOOD FLOW

- 0600-1200 ml/min (high)
- OAV O2 difference low (1.5 mL/dL)
- ODuring exercise increases 1.5 times
- OLow basal tone, not altered in denervated / innervated kidney
- OVO2 in kidneys is directly proportional to RBF, Na reabsorption & GFR
- ONot homogenous flow, cortex more & medulla less

- Vasa recta hairpin bend like structure, hyperosmolarity inner medulla
- Transplanted kidney- cortical blood flow show autoregulation & medullary blood flow don't show autoregulation, so no TGF mechanism
- O Neurogenic vasodilation not exist
- 20% of resting cardiac output, while the two kidneys make < 0.5% of total body weight.</p>
- Excretory function rather than its metabolic requirement.
- Remarkable constancy due to autoregulation.

Processes concerned with urine formation.

- 1. Glomerular filtration,
- 2. Tubular reabsorption and
- 3. Tubular secretion.

Glomerular filtration

 Glomerular filtration refers to process of ultrafiltration of plasma from glomerular capillaries into the Bowman's capsule.

GLOMERULAR FILTRATION DEPENDS ON

- 1. Characteristics of filtration membrane,
- Composition of glomerular filtrate,
- 3. Dynamics of glomerular filtration,
- 4. Glomerular filtration rate,
- Filtration fraction,
- 6. Factors affecting glomerular filtration

1.Characteristics of filtration membrane

- High permeability
- Permeability selectivity
- 1. Pore size
- Below 8mm
- Above 8 nm
- 4-8 nm
- 2. Electric charge
- Glycoprotein/ sialic acid
- Neutral > cationic > anionic

Filtration Membrane

Glomerular filtration barrier

Substance	Molecular weight (dalton)	Radius (nm)	Filterability
Water	18	0.15	1
Sodium	23	0.10	1
Glucose	180	0.33	1
Inulin	5500	1.48	1
Myoglobin	17000	1.88	0.75
Albumin	69000	3.55	0.005

2.COMPOSITION OF GLOMERULAR FILTRATE

- Normally proteins excretion in urine is less than 100 mg/dl
- Filtration membrane permeability alterted in diseases
- As a result, filtration of proteins is increased and albumin appears in urine in significant amount (albuminuria or proteinuria)

3. DYNAMICS OF GLOMERULAR FILTRATION

Forces Favouring Filtration (mm Hg)

- Glomerular capillary hydrostatic pressure = P GC = 60
- o Bowman's capsule colloid osmotic pressure = π BS = 0

Forces Opposing Filtration (mm Hg)

- Bowman's capsule hydrostatic pressure =P BS = 18
- Glomerular capillary colloid osmotic pressure = π GC =32
- Net filtration pressure =
- \circ (Pgc-Ps) (π gc- π s)
- (60-18) (32-0)
- +10 mm Hg

4.Determinants of GFR

- The total amount of filtrate formed per minute by the kidneys
- Ultrafiltration occurs because of Starling forces i.e. hydrostatic and oncotic pressures.
- Starling principle

$$EFP = (P_{GC} - P_{BS}) - (\Pi_{GC} - \Pi_{BS})$$

Fig. 7.2.2 A diagrammatic representation of mechanism of glomerular filtration.

(Note: Length of the arrows denotes magnitude and direction of the force.

• GFR = Kf X
$$(P_{GC} - P_{BS}) - (\Pi_{GC} - \Pi_{BS})$$

• So, GFR =
$$12.5 \times [(60-18)-(32-0)]$$

$$= 12.5 \times 10$$

= 125 ml/min

- P_{GC =} Glomerular capillary hydrostatic pressure (60). outward= favour filtration
- PBS = Bowmen space hydrostatic pressure (18). Inward = oppose filtration
- o Π_{GC} = Glomerular capillary oncotic pressure (32) inward = oppose filtration
- O Π_{BS} = Bowmen space oncotic pressure (0) Outward = favour filtration

- Normal GFR= 125 ml/min (range 90–140 ml/min).
- o In women are 10% lower than in men.
- In 24 hr period, 180 L/day of plasma is filtered glomerulus.
- o 99% or more is reabsorbed, Only 1% or less is excreted as urine.
- After age of 30 years, GFR declines with age.
- If the GFR is too high:

Needed substances cannot be reabsorbed quickly enough & are lost in the urine

If the GFR is too low:

Everything is reabsorbed, including wastes that are normally dispose

5.FILTRATION FRACTION

- Ratio of GFR to renal plasma flow (RPF).
- GFR 125 ml/min and RPF 650 ml/min;
- \circ FF = 0.2 (125/650).
- Increase in FF = increase in reabsorption in PCT

6.FACTORS AFFECTING GLOMERULAR FILTRATION RATE

- Filtration coefficient (Kf).
- 2. Hydrostatic pressure in Bowman's space fluid (PBS)
- Glomerular capillary hydrostatic pressure (PGC).
- 4. Glomerular capillary oncotic pressure (πGC).
- Sympathetic stimulation
- 6. State of glomerular membrane

1. Filtration coefficient (Kf).

Increased Kf raises GFR & Decreased Kf reduces GFR.

Kf = permeability X filtration area (glomerular capillary membrane)

- Hypoxia and presence of toxic agents and increase in colloidal osmotic pressure of bowmen's space increase Kf by increasing permeability
- Sialoprotein have negative charge so anions have less permeability and size more than 8 nm will not filtered.
- Thickening of capillary membrane will decrease permeability.

- Filtration area-(SIZE OF CAPILLAR BED)
- Contraction of mesangial cells= Vasoconstrictors Release
 Endothelin, NE,TXA2,Histamine=
 decrease Kf = decrease GFR
- Relaxation of mesangial cells = Vasoconstrictors Release
 Dopamine, C-AMP, ANP, NO.PG
 increase Kf = increased GFR

Contraction of mesangial cells (decrease GFR)	Relaxation of mesangial cells (Increase GFR)	
Angiotensin-I	Atrial natriuretic peptide (ANP)	
Antidiuretic hormone (ADH)	Cyclic AMP	
Endothelins	Dopamine	
Histamine	Prostaglandins (PGE ₂)	
Leukotrienes—C ₄ and D ₄	Nitric oxide (NO)	
Prostaglandins (PGF ₂)		
Platelet derived growth factor (PDGF)		
Platelet activating factor		
Thromboxane-A ₂		

2. Hydrostatic pressure in Bowman's space fluid (PBS)

- Opposes filtration
- Therefore GFR is inversely related to it.
- Odema of kidney inside tight renal tubule increase P_{BS}
- o ureteric obstruction by stone increase PBS

3.Glomerular capillary hydrostatic pressure (P_{GC}).

- GFR Directly related to P_{GC}.
- o dependent on:
- (i) Arterial pressure.
- Autoregulation (80–200 mm Hg)
- Increased above 200 mm Hg -raise GFR
- Decreased below 70 mm Hg -lower GFR.
- (ii) Renal blood flow.
- GFR is directly proportional to the renal blood flow
- Autoregulatory mechanisms.
- (iii) Afferent and efferent arteriolar resistance.

GFR

- Definition
- Normal value
- 3. Variation
- Calculation (different pressures acting on glomerular membrane)
- Factors affecting GFR
- 6. Regulation of GFR
- 7. Measurement of GFR
- 8. Renin angiotensin system

QUESTIONS

LONG QUESTION

- 1. GFR
- 2. RENIN ANGIOTENSIN SYSTEM

SHORT NOTE

- DYNAMICS OF GFR
- 2. FILTRATION FRACTION
- 3. ANGIOTENSIN II
- 4. FACTORS AFFECTING GLOMERULAR FILTRATION RATE
- 5. REGULATION OF GFR
- 6. RENAL CLEARANCE TEST
- 7. MEASUREMENT OF GFR