HEMOGLOBIN

Learning Objectives:

- 1. List the steps in the biosynthesis of Hemoglobin
- 2. Describle the function of Hemoglobin
- 3. Describe the fate of Hemoglobin
- 4. List the Normal and Abnormal Hemoglobin
- 5. Discuss the types of Jaundice

Structure of Hemoglobin

(a) Hemoglobin

(b) Iron-containing heme group

Hemoglobin

- Oxyhemoglobin hemoglobin bound to oxygen
 - Oxygen loading takes place in the lungs
- Deoxyhemoglobin hemoglobin after oxygen diffuses into tissues (reduced Hb)
- Carbaminohemoglobin hemoglobin bound to carbon dioxide
 - Carbon dioxide loading takes place in the tissues

Synthesis of Haemoglobin (Hb)

 Haem & globin produced at two different sites in the cells

- Haem in mitochondria
- Globin in polyribosomes
- Well synchronized
- Normal hemoglobin production is dependent upon 3 processes: Adequate iron delivery and supply, adequate synthesis of protoporphyrins and adequate globin synthesis.

Hemoglobin Structure and Function

- Hemoglobin occupies 33% of the RBC volume and 90-95% of the dry weight.
 - 65% of the hemoglobin synthesis occurs in the nucleated stages of RBC maturation and 35% during the reticulocyte stage.
 - Normal hemoglobin consists of 4 heme groups which contain a protoporphyrin ring plus iron and globin which is a tetramer of 2 pairs of polypeptide chains.

Hemoglobin synthesis

Porphyria

 Since porphyrinogens are readily oxidized to form porphyrins, excess formation of porphyrins can occur if any of the normal enzymatic steps in heme synthesis is blocked.

Inherited

Erythropoietic porphyria - results from excessive production of porphyrins in the bone marrow.

Hepatic porphyria - results from excessive production of porphyrins in the liver.

- Acquired

Lead intoxication - interferes with protoporphyrin synthesis

Chronic alcoholic liver disease

Synthesis of Haemoglobin

Globin Synthesis

- In the fetus and the adult 4 types of hemoglobin chains may be formed: alpha (②), beta (②), gamma (②), and delta (②).
- Normal hemoglobin's contain 4 globin chains.
- Hemoglobin (hgb) $F = \mathbb{Z}_2 \mathbb{Z}_2$ and is the predominant hgb formed during liver and bone marrow erythropoiesis in the fetus.
- A normal, full term baby has 50-85% hgbF.
- Near the end of the first year of life, normal adult hgb levels are reached.

Hemoglobin Structure and Function

Normal adult RBCs contain:

- » 95-97% hgb A=2222
- » 2-3% hgb A2= ②₂②₂
- » 1-2% hgb F (fetal hgb)= ②₂②₂
- Each globin chain links with heme to form hgb= 4 globin
 + 4 heme.
- An adequate amount of globin synthesis is also important. A decreased production in 1 chain results in thalassemia.

Hemoglobin Structure and Function

- The primary function of hgb is gas transport.
 - In unloading the space between the chains widens and 2,3 diphosphoglycerate (DPG) binds. This is the T (tense) form of hgb and it is called deoxyhgb. It has a lower affinity for O₂, so O₂ unloads from the hbg.
 - When hgb loads O₂ and becomes oxyhgb the chains are pulled together, expelling 2,3 DPG. This is the R (relaxed) form of hgb. It has a higher affinity for O₂, so O₂ binds to or loads onto the hgb.

Oxy & deoxyhaemoglobin

Hemoglobin Structure and Function

- Acquired abnormal hgbs of clinical importance are those that have been altered post- translationally to produce hgbs that are unable to transport or deliver O₂ and they include:
 - Carboxyhgb CO replaces O₂ and binds 200X tighter than O₂
 - » This may be seen with heavy smokers
 - Methgb occurs when iron is oxidized to the +3 (ferric) state. In order for hgb to carry O₂ the iron must be in the +2 (ferrous) state. In the body, normally~ 2% is formed and reducing systems prevent an increase beyond 2%.
 - » Increases above 2% can occur with the ingestion of strong oxidant drugs or
 - » As a result of enzyme deficiency.

Hemoglobin Structure and Function

- » Methgb can be reduced by treatment with methylene blue or ascorbic acid.
- Sulfhgb occurs when the sulfur content of the blood increases due to ingestion of sulfur containing drugs or to chronic constipation. Unlike 1 and 2 this is an irreversible change of hgb.

Erythrocyte destruction

- RBC destruction is normally the result of senescence.
 - Each day ~ 1% of the RBCs are removed and replaced.
 - RBC aging is characterized by decreased glycolytic enzyme activity which leads to decreased energy production and subsequent loss of deformability and membrane integrity.
 - 90% of aged RBC destruction is extravascular and occurs mainly in the phagocytic cells in the spleen, with a small amount occurring in the liver and bone marrow.

Function of Haemoglobin

When there is a high concentration of oxygen e.g in the alveoli haemoglobin combines with oxygen to form oxyhaemoglobin. When the blood reaches the tissue which have a low concentration of oxygen the haemoglobin dissociates with the oxygen and the oxygen is released into body tissues

Heme Degradation

Heme Catabolism

BILE

Figure 21.9

Catabolism of heme

= bilirubin;

= bilirubin diglucuronide;
= urobilinogen;
= urobilin;
= stercobilin.

Jaundice (icterus)

hyperbilirubinemia

- causes yellow color of skin, nail beds and sclerae

Figure 21.10

Jaundiced patient, with the sclerae of his eyes appearing yellow.

Copyright © 2005 Lippincott Williams & Wilkin

- not a disease, but symptom of underlying disorders

Jaundice

Hyperbilirubinemia:

Two forms:

Direct bilirubin: Conjugated with glucoronic acid

Indirect bilirubin: unconjugated, insoluble in water.

Types of Jaundice

hemolytic jaundice

- liver can handle 3000 mg bilirubin/day normal is 300
- massive hemolysis causes more than can be processed
 - can't be conjugated
 - increased bilirubin excreted into bile, urobilinogen is increased in blood, urine
 - unconjugated bilirubin in blood increases = jaundice

obstructive jaundice

- obstruction of the bile duct
 - tumor or bile stones
 - gastrointestinal pain nausea
 - pale, clay-colored stools
 - can lead to liver damage and increased unconjugated bilirubin

Types of Jaundice

Hepatocellular Jaundice

- liver damage (cirrhosis or hepatitis) cause increased bilirubin levels in blood due to decreased conjugation
- conjugated bilirubin not efficiently exported to bile so diffuses into blood
- increased urobilinogen in enterohepatic circulation
 - so urine is darker and stool is pale, clay-colored
- Serum Aminotransferases (AST and ALT levels) are elevated
- nausea and anorexia

Van den Bergh reaction

- 1-This is a reaction between <u>bilirubin and Ehrlich</u> <u>diazo reagent</u> giving a <u>reddish purple</u> compound.
- 2- <u>Conjugated bilirubin</u> reacts directly with the reagent. Thus it is called: <u>direct bilirubin</u>
- 3- <u>Unconjugated bilirubin</u> does <u>not react</u> with the reagent directly except after addition of <u>methyl</u> <u>alcohol</u>. Thus it may be called: **indirect bilirubin**

Serum Bilirubin – Applications

Type of Bilirubin	van den Bergh Reaction	Class of Jaundice	Causes	
Unconjugated	Indirect positive	Pre-hepatic or Hemolytic	Neonatal jaundice Sickle cell anaemia Thalassemia Gilbert's syndrome Crigler-Najjar syndrome Mismatch blood transfusion	
Both Unconjugated and Conjugated	Biphasic	Hepatic	Viral hepatitis Alcoholic hepatitis Drug induced hepatitis	
Conjugated	Direct positive	Post-hepatic or Obstructive	Gall stones Biliary atresia Tumours of biliary tract Carcinoma head of pancreas	

Examples of hyperbilirubinemia

A. Hemolytic anemia

- unconjugated bilirubin (in blood)
- conjugated bilirubin (released to bile duct)

B. Hepatitis

- ↑ unconjugated bilirubin (in blood)
- ↑ conjugated bilirubin (in blood)

C. Biliary duct stone

- ↑ unconjugated bilirubin (in blood)
- ↑ conjugated bilirubin (in blood)

Table 2: Differences between the Three Basic Types of Jaundice

There 2. Billioteness between the times busic types of summine					
Haemolytic Jaundice	Hepatocellular Jaundice	Extrahepatic Cholestatic Jaundice			
Pale	High coloured	High coloured			
Normal	Normal to dark	Pale coloured			
-	-/+	++			
Lemon yellow	Deep yellow	Orange yellow/greenish yellow			
H/o anaemia requiring blood transfusions (BT)	Injection/BT/tattoos contact with a jaundiced patient	Biliary surgery or gall stones			
Anaemia	Jaundice	Gall stones			
++	+	\$			
Evidence of haemolysis 1 <5 mg/dL (usually) (unconjugated)	Normal ↑ - ↑↑↑ (mixed)	Normal 1-111 (predominantly conjugated)			
Normal	1-111	Normal/T			
Normal	Normal/T	11			
Hepatosplenomegaly liver †/normal spleen †- †††	Liver 1/N spleen N/1	Liver 11 with dilated ducts			
	Pale Normal Lemon yellow H/o anaemia requiring blood transfusions (BT) Anaemia ++ Evidence of haemolysis	Haemolytic Jaundice Pale Normal Normal to dark -			

Jaundice in Newborns

premature babies often accumulate bilirubin due to late onset of expression of bilirubin glucuronyltransferase

- maximum expression (adult level) at ~ 4 weeks
- excess bilirubin can cause toxic encephalopathy (kernicterus)
- treated with blue fluorescent light
 - converts bilirubin to more polar compound
 - can be excreted in bile without conjugation
- Crigler Najjar syndrome is deficiency in bilirubin glucuronyltransferase

Figure 21.11

Alterations in the metabolism of heme. A. Hemolytic jaundice. B. Neonatal jaundice. [Note: The enterohepatic circulation of urobilinogen is omitted for simplicity.] BG = bilirubin glucuronide; B = bilirubin; U = urobilinogen; S = stercobilin.

Copyright © 2005 Lippincott Williams & Wilkins

Figure 21.13
Phototherapy in neonatal jaundice.

Copyright © 2005 Lippincott Williams & Wilkins

ure 21.12

natal jaundice.

ight © 2005 Lippincott Williams & Wilkins