Digestion and Absorption

Digestion and Absorption

- Digestion is a process essential for the conversion of food into a small and simple form.
 - * Mechanical digestion by mastication and swallowing
 - Chemical digestion by enzymes
- Absorption is the process of transporting small molecules from the lumen of the gut into blood stream or lymphatic vessel.

Chemical and Mechanical Digestion

Digestion and Absorption

- Small intestine is primary site for digestion and absorption of food.
- Digestion occurs in the GI lumen by secreted enzymes and on surface of enterocytes by membrane-bound enzymes.
- Absorption occurs by simple diffusion, facilitated diffusion, active transport, endocytosis, and paracellular transport.
- Surface area of small intestine is greatly increased by extensive folding and the projection of fingerlike villi covered with microvilli.

Intestinal Mucosa

© 2007-2011 The University of Waikato | www.sciencelearn.org.nz

Intestinal Villi

Absorption of Water

Absorption of Water

Digestion of CHO

Absorption of CHO

Enterocytes absorb glucose and galactose through an Nadependent secondary active transport process, while fructose is absorbed by facilitated transport.

LACTOSE INTOLERANCE

Failure to produce lactase

- Undigested lactose enters the large intestine where it is fermented by the bacteria resulting in gases
- Symptoms and signs include osmotic diarrhea (large volume, watery, no blood, improves with fasting), gas bloating, and abdominal cramps
- Avoiding diary products is helpful
- Supplemental lactase can be used

0 0

Digestion and absorption of proteins

(c)

Absorption of proteins

- The whole proteins by endocytosis
- Amino acids and di and tripetides by Nadependent 2ry active transport

DISORDERS

Acute/chronic pancreatitis

- Results from inflammation or destructive autodigestion of pancreas
- Pancreatic duct blockage causes loss of trypsin inhibitor and activation of proteolytic enzymes
- Results in deficiency in pancreatic enzymes (including proteases), high serum amylase

Cystic fibrosis

 In the GIT: failure to secrete bicarbonate and water, decreased Na+ reabsorption, intestinal obstruction by thick mucus, pancreatic insufficiency, hepatic cirrhosis, steatorrhea,

Digestion of fats

Absorption of Lipids

Absorption of Fats in the Small Intestine

ABNORMALITIES: LIPID DIGESTION & ABSORPTION

- Pancreatic insufficiency (chronic pancreatitis, cystic fibrosis)
- Increased acidity of duodenal contents
- Deficiency of bile salts (i.e., ileal resection)
- Bacterial overgrowth (de-conjugation of bile removal of glycine and taurine from bile salts, converting them to bile acids)
- Tropical sprue
 - Malabsorption syndrome
 - Progressive villi atrophy in the small intestine
 - Impairment in lipid digestion
 - Hypothesized etiology a still-undefined infection.
 - Is endemic in India, Southeast Asia, Africa, the Philippines, and certain Caribbean islands
- Failure to synthesize apoproteins (affects formation of chylomicrons) (abetalipoproteinemia). Abetalipoproteinemia results in the absence of apo-B containing lipoproteins in the plasma (chylomicrons, LDL, VLDL), accumulation of lipid droplets in the cytoplasm of enterocytes and deficiency of fat-soluble vit.

CELIAC SPRUE(GLUTEN-SENSITIVE ENTEROPATHY)

- A common disease, which involves a primary lesion of the intestinal mucosa
- Is caused by the sensitivity of the small intestine to gluten water soluble protein (present in wheat, barley, oats, etc,)
- Gluten or products of its digestion interact with intestinal mucosa and cause its lesion (mechanism is not known)
- Consequences
 - ↓ area available for reabsorption
 - production of intestinal digestive enzymes
- **Treatment**: gluten-free diet

A Summary of Digestion of Carbohydrates, Proteins and Lipids

	(a) Carbohydrate digestion	(b) Protein digestion	(c) Nucleic acid digestion	(d) Fat digestion
Oral cavity, pharynx, esophagus	Polysaccharides (starch, glycogen) Salivary amylase Smaller polysaccharides, maltose			Lingual lipase
Stomach		Proteins Pepsin Small polypeptides		Gastric lipase
Lumen of small intestine	Pancreatic amylases Pancreatic amylases Maltose and other disaccharides	Polypeptides Trypsin, Chymotrypsin Smaller Aminopeptidase, Carboxypeptidase Amino acids	DNA, RNA Nucleases Nucleotides	Fat globules Bile salts Fat droplets (emulsified) lipase Lipase Glycerol, fatty acids, glycerides
Epithelium of small intestine (brush border)	Disaccharidases Monosaccharides	Srr Aminopeptidase, Dipeptidases Amino acids	Nucleotidases Nucleosides Nucleosidases Nitrogenous bases, sugars, phosphates	

Sites of Secretion and Absorption into Gastrointestinal Tract

ABSORPTION OF OTHER SUBSTANCES				
Substrate	Absorption			
Na+	Na+ channels, cotransport with AA, glucose, CI-; Na/H countertransport (role of aldosterone)			

Na-Cl cotransport, Cl/HCO3 countertransport;

Cl is also **secreted** into the lumen (**cAMP**,

Lipid soluble and take up in micelles (SI)

Na+ dependant co-transport in the SI

Active transport mechanism in the distal

In the stomach and SI (depends on the rate

of gastric emptying); gastric alcohol

Osmosis (mainly in the SI) -95-98%

cholera toxin)

dehydrogenase

ileum

CI-

Alcohol

Water

Vitamins A, D, E, and K

Water soluble vitamins

Vitamin B 12 combines with IF

Absorption of electrolytes

Absorption of vitamins & minerals

Vitamins

- Water soluble absorbed rapidly
- Fat soluble (A,D,E & K) decreases if fat absorption decreases
- Vitamin B₁₂ binds to intrinsic factor (I.F)
 Vit B₁₂ IF complex is absorbed in the ileum

Calcium

- Normal intake 1gm / day
- 30 80% of ingested Ca²⁺ is absorbed by active transport in upper small intestine (some also by passive)
- Factors affecting:
 - Facilitated by
 - DHCC (dihydroxycholecalcifereol)
 - Lactase
 - proteins
 - · Inhibited by
 - Phosphate
 - oxalates

<u>Iron</u>

- Total iron in body: 4-5 gms
 - 70% in hemoglobin
 - 3% myoglobin
 - 27% ferritin
- Average Iron intake ~ 20-25 mg / day
- Iron absorbed is ~ 3-6 % of ingested amount
- Amount absorbed = loss

- Readily absorbed in ferrous (Fe²⁺) state
- Most dietary iron is in ferric form (Fe³⁺)
- Fe³⁺ reduced by HCl to Fe²⁺
- Absorption is an active process
- Absorbed in upper small intestine (duodenum & jejunum)
- Iron bound to iron binding protein (apoferritin) to form ferritin
- Ferritin is the principle storage form of iron in intestine & many tissues

- Hemosiderosis iron overload, leading to accumulation of hemosiderin in tissues
- The tissue damage by hemosiderin Hemochromatosis
 - Skin pigmentation
 - Pancreatic damage (Bronze diabetes)
 - Cirrhosis of liver
 - Gonadal atrophy

Malabsorption syndrome

- Absorptive defect due to lack of digestive enzymes
- Causes:
 - Lactose intolerance lactase deficiency leads to intolerance to milk
 - Biliary obstruction
 - Pancreatic disease
 - Coeliac disease & sprue
 - Extensive intestinal resection
 - Irradiation of the bowel

