
Classification &

Comparison of Muscles

Dr. Viral I. Champaneri, MD
Assistant Professor
Department of Physiology

Comparison Features

1. Structural features

2. Nerve supply and control

3. Electrical features

4. Excitation contraction coupling

Comparison Features

5. Contractility characteristics

6. Chemical composition

7. Blood supply

8. O₂ consumption and Muscle energetics

Structural Features

Striations

Skeletal Muscles

Present

Cardiac Muscles

Present

Smooth Muscles

Absent

Size of Fibers

Cardiac Muscles

Skeletal Muscles

Length

Length

Length

- 80 μm

- 50-500 μm

Smooth Muscles

- 1-40 mm

Diameter

Diameter

Diameter

- 15 μm

- 50-500 μm

- 2-10 μm

Shape of the Muscle Fibers

Skeletal Muscles

Cardiac Muscles

Smooth Muscles

Cylindrical

Cylindrical

Spindle

shaped

Branching of Fibers

Skeletal Muscles

Cardiac Muscles

Smooth Muscles

Absent

Present

Absent

Connection between fibers

Skeletal Muscles

Absent

Cardiac Muscles

- Functional connections
- Forming

Functional

Syncytium

Smooth Muscles

- Single Unit
 - Functional connectionPresent
- Multiunit
 - No connections

Nucleus

Skeletal Muscles

Cardiac Muscles

Smooth Muscles

Single /

Central

Single

Multiple

At periphery

with many

nuclei

Sarcoplasmic reticulum (SR)

Skeletal Muscles

Very well

developed

Cardiac Muscles

Well developed

Not as Skeletal

muscle

Smooth Muscles

Moderately

developed

Sarcotubular system

Skeletal Muscles

Cardiac Muscles

Smooth Muscles

Present

Present

Present

Well

But <u>not</u> well

developed

developed

well

Sarcotubular system

Skeletal Muscles

Cardiac Muscles

Smooth Muscles

• 2 Triad

• 1 Triad

• Not

Per

Per

developed

Sarcomere

Sarcomere

T - Tubule

Skeletal Muscles

Cardiac Muscles

Smooth Muscles

• At

• At

Not well

A-I junction

• Z line

developed

Thick & Thin filaments

Skeletal Muscles

Cardiac Muscles

Smooth Muscles

Arranged

regularly

Arranged

regularly

Not arranged

regularly

Sarcomere

Skeletal Muscles

Cardiac Muscles

Smooth Muscles

Present

Present

Absent

Regulating protein

Skeletal Muscles

Cardiac Muscles

Smooth Muscles

Troponin

Troponin

Calmodulin

Ca²⁺ store & Ca²⁺ Pump in SR

Skeletal Muscles

Cardiac Muscles

Smooth Muscles

High

Moderate

Low

Na⁺ channels in the membrane

Skeletal Muscles

Fast Voltage
 gated Na⁺
 channels

Cardiac Muscles

- Fast voltagegated Na⁺channels
- Slow voltagegated Na+-Ca+channels

Smooth Muscles

- Mainly <u>slow</u>
 Voltage gated Na⁺ Ca⁺ channels
- Few Fast voltage
 gated Na+
 channels

Mitochondria

Skeletal Muscles

Cardiac Muscles

Smooth Muscles

Few

Many

Few

Nerve supply & Control

Nerve supply

Skeletal Muscles

Somaticnerves

Cardiac Muscles

- Autonomic nerves
- Sympathetic
 - Excitatory
- Parasympathetic
 - Inhibitory

Smooth Muscles

- Autonomic nerves
- Sympathetic
 - Inhibitory
- Parasympathetic
 - Excitatory

Control

Skeletal Muscles

Voluntary

Cardiac Muscles

Involuntary

Smooth Muscles

Involuntary

Electrical features

Resting Membrane Potential (RMP)

Skeletal Muscles

• -80 to -90 mV

Cardiac Muscles

• -80 to -85 mV

Smooth Muscles

• -50 to -60 mV

Action potential Shape

Skeletal Muscles

Spike potential

Cardiac Muscles

Plateaupotential

Smooth Muscles

- Single Unit
 - Plateau

Spike

- Multiunit
 - Spike

Action potential duration

Skeletal Muscles

• 1 to 5

milliseconds

Cardiac Muscles

• 100 -

milliseconds

Smooth Muscles

300 • Single Unit

• Plateau for 100-1000 msec

Spike for

10-50 mSec

Stimulated by

Skeletal Muscles

Somaticnerves

Cardiac Muscles

Autonomic nerves

Smooth Muscles

- Autonomic nerves
- Hormones
- Local tissue factors

Excitability

Skeletal Muscles

• High

Cardiac Muscles

Moderate

Smooth Muscles

Low

Conductivity

Skeletal Muscles

Fast

Cardiac Muscles

Slow

Smooth Muscles

Slow

Absolute refractory Period

Skeletal Muscles

• 1 to 3 msec

Cardiac Muscles

• 180 – 200 msec • Not defined

Smooth Muscles

Autorhythmicity

Skeletal Muscles

Not present

Cardiac Muscles

Present

Smooth Muscles

- Present in
- Single unit muscle

Excitation - Contraction Coupling

Speed of Phenomenon

Skeletal Muscles

Rapid

Cardiac Muscles

Very <u>rapid</u>

Smooth Muscles

Very <u>Slow</u>

Site of Ca²⁺ attachment

Skeletal Muscles

Troponin

Cardiac Muscles

Troponin

Smooth Muscles

Myosin

Mechanism of Ca²⁺Mobilization

Skeletal Muscles

T-tubule depolarized

Cardiac Muscles

Ca²⁺ induced
Ca²⁺ released

Smooth Muscles

- Inositoltriphosphate(IP₃)
 - Increases
 release of Ca²⁺

Dependence on ECF [Ca²⁺]

Skeletal Muscles

Not dependent

Cardiac Muscles

Partly dependent

Smooth Muscles

- Almost
- Totally

dependent

Contractility characteristics

Rate of contraction

Skeletal Muscles

Fast

Cardiac Muscles

Fast

Smooth Muscles

Slow

Rate of relaxation

Skeletal Muscles

Fast

Cardiac Muscles

Fast

Smooth Muscles

Slow

Duration of Muscle Twitch

Skeletal Muscles

- Fast fibers
 - □ 7.5 msec
- Slow fibers
 - □ 100 msec

Cardiac Muscles

- 1^{1/2} times of total duration of Action potential
- [100 to 300 mSec]

Smooth Muscles

• About 1000 msec

All or None law

Skeletal Muscles

- Obeyed by
- Single muscle fiber

Cardiac Muscles

- Obeyed by
- Whole Muscle

Smooth Muscles

- Single Unit
- Whole muscle
- Multiunit
- Single muscle fiber

Multiple (Quantal) summation

Skeletal Muscles

Possible

Cardiac Muscles

- Not possible
- Work as
- Functional syncytium

Smooth Muscles

Not possible

Tetanus (Wave) summation

Skeletal Muscles

Possible

Cardiac Muscles

- Not possible
- Due to long refractoryperiod (ARP)
- (180 200 mSec)

Smooth Muscles

- Not possible
- Process of contraction is long

Fatigue

Skeletal Muscles

Possible

Cardiac Muscles

- Not possible
- Due to long refractory period
- More blood supply

Smooth Muscles

- Possible
- Difficult to demonstrate

Length-Tension Relationship

Skeletal Muscles

- Maximum tension
- Developed at
- Optimal length

Cardiac Muscles

- Maximum tension
- Developed at
- Optimal length

Smooth Muscles

Shows

property

Plasticity

Chemical composition

Protein

Skeletal Muscles

Cardiac Muscles

Smooth Muscles

• Maximum

Less

Less

Glycogen

Skeletal Muscles

Cardiac Muscles

Smooth Muscles

Less

More

Less

ATP & Phosphogen

Skeletal Muscles

Cardiac Muscles

Smooth Muscles

Present

Present

Present

Fat

Skeletal Muscles

Cardiac Muscles

Smooth Muscles

Mainly natural
 More

fats

Phospholipids

Cholesterol

Mainly natural fats

Blood supply

Skeletal Muscles

Cardiac Muscles

Smooth Muscles

• 840 ml/min

• 250 ml /min

• 350 ml /min

• 3 to

80

• 1.4

ml/100gm/min

ml/100gm/min

ml/100gm/min

Oxygen consumption

Skeletal Muscles

Moderate

Cardiac Muscles

High

Smooth Muscles

Low

Dr. Viral I. Champaneri, MD
Assistant Professor
Department of Physiology

Skeletal muscle fibers

Innervated by Large myelinated nerve fibers

• Originate in large motoneurons of the anterior

horns of spinal cord

Each nerve fiber

After entering the muscle belly

Branches and stimulates

Three to several hundred skeletal muscle fibers

Each nerve ending makes a junction

Called Neuromuscular Junction

• With the muscle fiber

Near its midpoint

Synapse between

• Nerve fiber

And

• The muscle fiber

Resulting action potential in the muscle fiber

Travels in both directions

Towards

The muscle fiber ends

• Exception: 2% of the muscle fibers

• Only one (1) neuromuscular junction

• Per muscle fiber

Neuromuscular junction formed

By → Large myelinated nerve fiber

• To A skeletal muscle fiber

- To form complex of branching nerve terminals
- Invaginate muscle fiber
- But lies outside
- The muscle fiber plasma membrane

• The entire structure

Branching nerve terminal

Invagination of muscle fiber is called

Motor end plate

Motor end plate:

Thickened portion of

Muscle membrane at the junction

Motor end plate:

Specialized portion of

The sarcolemma of the muscle fiber

Surrounding the terminal end of the axon

The nerve endings fit into → Junctional folds

• Junctional folds **→**

Depression in the motor end plate

Motor end plate

Covered by one or more Schwann cells

That insulate motor end plate

From surrounding fluids

Invaginated membrane is called

Synaptic gutter

• Or

Synaptic trough

The space between

The terminal nerve ending and

Thickened muscle fiber membrane

Synaptic space or Synaptic cleft

• Synaptic space or Synaptic cleft

• 20 to 30 nanometers (nm) wide

Comparable to synaptic cleft at

Neuron-to-neuron synapses

Subneural clefts:

At the bottom of synaptic gutter

Numerous smaller folds of muscle membrane

• Subneural clefts:

• Increase surface area

At which synaptic transmitter

Can act

Axon terminal:

Many Mitochondria

Supply Adenoosine Triphosphate (ATP)

ATP → Energy source

Used mainly for

• Synthesis of excitatory transmitter

-

Acetylcholine (Ach)

- Acetylcholine (Ach):
- Excites muscle fiber membrane
- Synthesized : In cytoplasm of nerve terminal
- Absorbed rapidly
- In to many small synaptic vesicles

• Synaptic vesicles:

• 3,00,000

Terminal of single end plate

• Acetylcholineesterase:

Synaptic space

Capable to destroying acetylcholine (Ach)