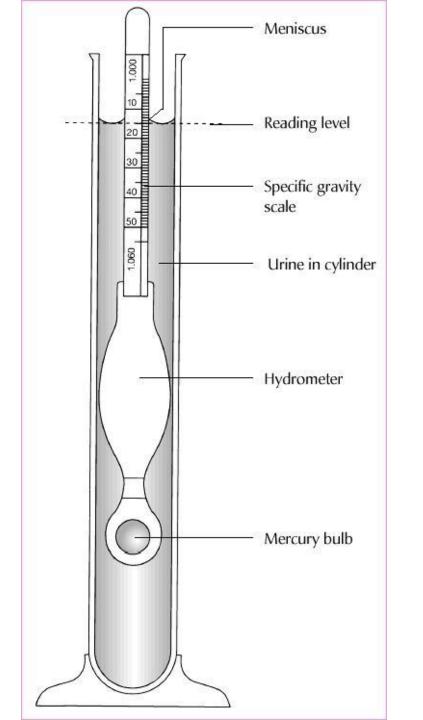
STUDY OF NORMAL CONSTITUENTS OF URINE

By Sandipkumar Kanazariya

Physical Characteristics

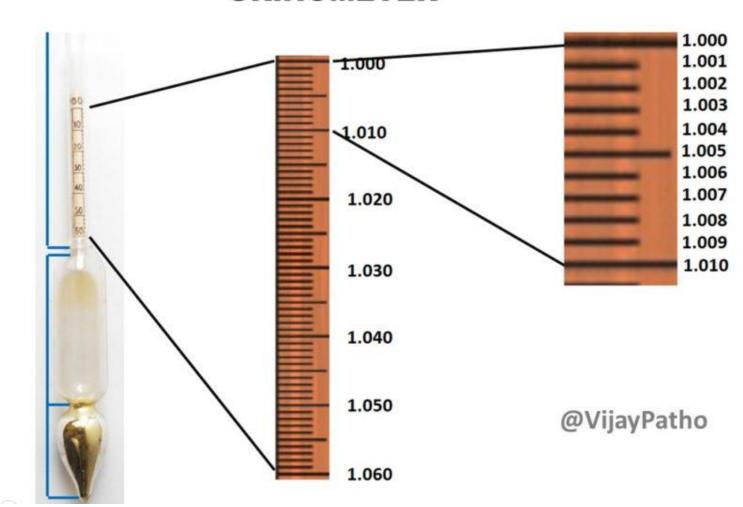

Features	Characteristic	Reason
Volume	800-2500 ml/day Average 1500 ml/day	Quantity of Fluid & Food intake, Climate Change, Physical Exercise
Appearance	Fresh Sample - Clear & Transparent	On standing, Urine appears Turbid. Bacterial Action converts urine Urea to Ammonia. This makes urine Alkaline leading to precipitation of Phosphate, Oxalates and Urates.
Color	Fresh Sample – Straw / Amber color	Presence of Pigment Urochrom imparts color to the urine.
Odor	Aromatic Odor	Presence of Volatile Organic Acids. On standing, urine gives ammonical smell due to conversion of urine Urea in Ammonia by Bacterial Action.
рН	Range : (4.8 – 7.5) Average 6.0 (Acidic)	Protein Diet makes more Acidic Urine. Diet Rich in fruits and vegetables makes Alkaline Urine. On standing Urine becomes Alkaline due to Ammonia Formation.
Specific Gravity	1.012 – 1.024	Fluid Intake and Specific Gravity has Reciprocal Relationship.

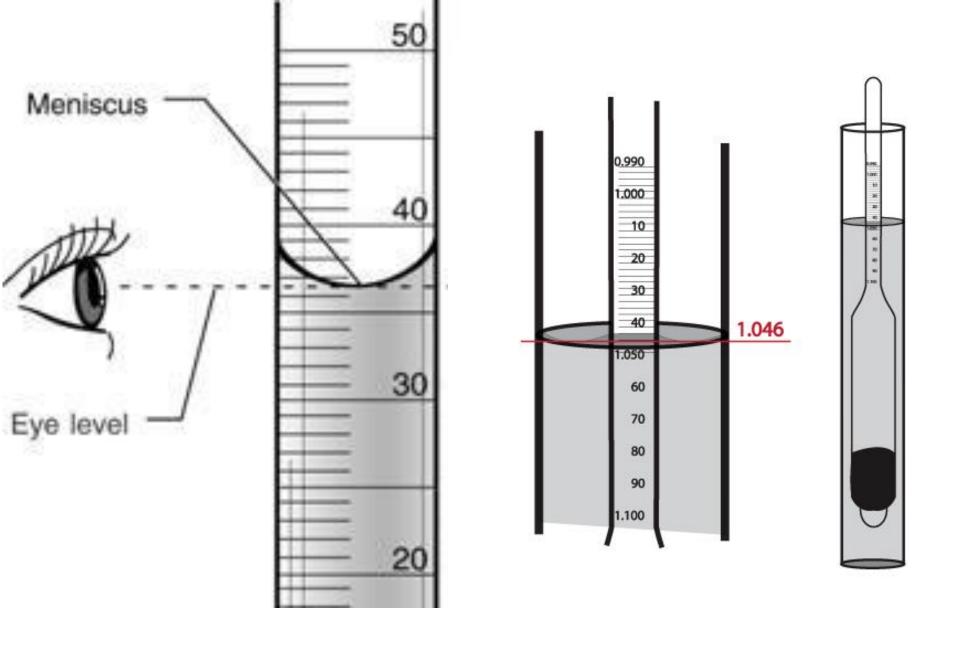
Determination of Specific gravity by urinometer

- 1. Check the urinometer by taking the Specific gravity of given sample of urine. See that urinometer does not touch to any side of or bottom of the urine jar.
- 2. Correction of Specific gravity.
- Note the room temperature (Generally urinometer is calibrated at 20 °C)
- Find out the difference between the room temperature and calibrated temperature.

- Now, Calibrated specific gravity at 20 °C = 1.010
- i. For every 3 °C rise in temperature add 0.001 as a correction factor from observed specific gravity.
- ii. For every 3 °C fall in temperature subtract 0.001 as a correction factor from observed specific gravity.

- Calibrated temperature= 20 °C for every 3 °C rise in temperature, correction factor =0.001
- Room temperature=32 °C for 12 °C correction factor = 0.001 x 4 = 0.004
- Rise temperature=12 °C
- Corrected or true specific gravity at 32 °C =
 Observed specific gravity + Correction Factor
 = 1.010 + 0.004 = 1.014


URINOMETER


Parts

STEM

FLOAT

WEIGHT

7. Sedimentation

• Normal urine does not contain any sediment but upon standing, sediments appear. This is due to bacterial fermentation of urea to ammonia and carbon dioxide by the action of specific enzyme urease.

Chemical composition

- Normal urine contains both organic & inorganic constituents.
- Inorganic constituent includes Na+, Cl-, K+, Ca++, Mg, SO4-, NH3 & traces of bicarbonate ions.
- Organic constituent includes urea, uric acid, creatinine, urobilinogen, hippuric acid, indican, ethereal sulphate etc.

TESTS OF ORGANIC CONSTITUENTS

A. TEST FOR UREA

1. Sodium Hypobromide Test:

• When urea is treated with sodium hypobromite, it decomposes to give nitrogen.

1. Sodium Hypobromide Test

Test	Observation	Inference
To 2 ml of urea	Brisk	Urea is
solution in a	effervescence	Confirmed.
test tube, add 5	of Nitrogen gas	Normal Urine
drops of 40%	is observed	Contains Urea.
sodium		
hydroxide + 8-		
10 drops of		
bromine water.		

2. Specific Urease Test

- When urea is treated with the enzyme urease, it is converted to ammonia and corbonic acid. Under the pH of the reaction conditions, they are converted to ammonium carbonate.
- The pH of the solution goes above 8.5 when urea is converted to ammonium carbonate. At this pH, phenolphthalein gives pink colour.

2. Specific Urease Test

Test	Observation	Inference
To 5 ml urea solution in a test	Pink colour is	Urea is
tube, add 2 ml of Urease	obtained	Confirmed.
suspension. add 2 drops of		Normal Urine
Phenolphthalein indicator and		Contains Urea.
Observe		

B. Test for uric acid

• Uric acid is a reducing agent in alkaline condition. it reduces phosphotungstic acid to tungsten blue.

3. Benedict's Uric Acid Reagent Test/ Phosphotungstic acid reduction test

Test	Observation	Inference
To 2 ml of uric	Blue colour is	Uric acid is
acid solution, add	obtained	confirmed.
5 drops of		Normal urine
Benedict's uric		contains uric acid.
acid reagent,		
followed by 5		
drops of 20%		
Na2CO3.		

C. Test for Creatinine

• 4. Jaffe's Test: Creatinine present in urine reacts with picric acid in alkaline medium to form creatinine picrate complex which has orange red colour.

4. Jaffe's Test

Test	Observation	Inference
To 2ml	Orange colour	Creatinine is
Creatinine	is obtained	Confirmed.
solution + 2 ml		Normal Urine
saturated picric		Contains
acid solution +		Creatinine.
1 ml of 10%		
NaOH.		

INORGANIC CONSTITUENTS

D. Test for chloride

- Reagent Required: concentrated HNO₃ & 5% AgNo₃ solution.
- **Reaction**: -Chloride present in urine react with silver nitrate to form white ppt of silver chloride.
- $NaCl + AgNO_3$ \rightarrow $AgCl + NaNO_3$

5. Chloride Test

Test	Observation	Inference
1 ml Urine	White curdy	Chlorides are
sample few	precipitate is	precipitated as
drops of conc.	obtained.	AgCl.
HNO3 + 1ml		Therefore
AgNO3. Mix it		normal urine
well and		contains
observe.		chloride.

E. Test for Sulphate

- Reagent Required: BaCl₂ & concentrated HNO₃.
- **Reaction**: Sulphate present in urine reacts with barium chloride solution to form white precipitate of barium sulphate.

6. Sulphate Test

Test	Observation	Inference
3 ml Urine	White	Inorganic
sample + 5	precipitate is	sulphates are
drops of 10%	obtained.	precipitated as
acetic acid + 2-		BaSO4.
3 ml of Barium		Therefore
Chloride (2%).		normal urine
Mix it well and		contains
observe.		sulphate.

F. Test for Phosphate

- Reagent Required :- Conc. HNO₃, NH₄OH, Ammonium molybdate solution,
- Reaction:- Phosphate present in urine when heated in presence of conc. HNO₃ reacts with ammonium molybdate to form canary yellow coloured precipitate of phospho-ammonium molybdate.

7. Phosphate Test

Test	Observation	Inference
3 ml Urine sample + 5 drops conc. HNO3. Add a pinch of ammonium molybdat, warm.	Canary yellow coloured precipitate of ammonium phosphomolybda te is obtained.	Phosphate is confirmed. Therefore normal urine contains phosphate.

G. Test for Calcium

- Reagent Required: Conc. HNO₃, NH₄OH, Ammonium oxalate.
- **Reaction**:- Calcium present in urine reacts with ammonium oxalate in presence of conc. HNO₃ to form white precipitate of calcium oxalate.

8. Calcium Test

Test	Observation	Inference
3ml Urine + 5 drops of 10% acetic acid + 3 ml of potassium oxalate	Trace amount of White precipitate of calcium oxalate is obtained.	

9. Ammonia Test

Test	Observation	Inference
To 5 ml of the urine sample, add 2 ml of 5% NaOH. Boil. Hold a Filter paper dipped in phenolphthalein at near the mouth of tube.	Filter papre turns pink due to liberation of NH3.	Ammonia is present. Therefore normal urine contains Ammonia.

CONCLUSION

- Normal urine is pale yellow or straw in colour
- Normal urine is acidic in nature. Normal urine has aromatic odour.
- Normal urine contains organic constituents like urea, uric acid and creatinine.
- Normal urine contains inorganic constituents like chloride, sulphate, phosphate and calcium.