Pulmonary Function Tests

- Forced Vital Capacity (FVC) measures the amt of gas expelled when one takes a deep breath and then forcefully exhales maximally and rapidly.
- Forced Expiratory Volume (FEV) determines the amt of air expelled during specific time intervals of the FVC test.
 - For example, the volume exhaled during the 1st second is the FEV₁. People w/ healthy lungs can exhale about 80% of the FVC in the 1st second.

Obstructive Disease

- Difficult to get air out of the lungs
- Obstruct expiration

- Examples:
 - emphysema
 - chronic bronchitis
 - asthma.

Restrictive Disease

- Difficult to get air in to the lungs
- "Restrict" inspiration
- Examples:
 - intersitial fibrosis
 - muscular diseases
 - chestwall deformities.

Lung Capacity and Disease— Summary

- Obstructive Disease:
 - Decreased VC
 - Increased TLC, RV, FRC.
- Restrictive Disease:
 - Decreased VC
 - Decreased TLC, RV, FRC.

Forced Vital Capacity FEV_{1.0} / FVC Ratio

Small Airways Disease FEF₂₅₋₇₅

FEF₂₅₋₇₅% = 1.4 FEF₂₅₋₇₅% = 3.7

FEF₂₅₋₇₅%

= 3.5 1/sec

Flow -Volume Curves

Dead Space

Anatomical dead space – volume of the conducting respiratory passages (150 ml)
Alveolar dead space – alveoli that cease to act in gas exchange due to collapse or obstruction
Total dead space – sum of alveolar and anatomical dead spaces

Alveolar Ventilation

 Alveolar ventilation rate (AVR) – measures the flow of fresh gases into and out of the alveoli during a particular time

AVR	=	frequency	Х	(TV – dead space)
(ml/min)		(breaths/min)		(ml/breath)

 Slow, deep breathing increases AVR and rapid, shallow breathing decreases AVR

Gas Laws Govern O2 and CO2 Saturation of Blood

- 1. Dalton's Law total pressure of a mixture of gases = sum of pressures of individual gases in the mix
 - pressure of a single gas in the mixture = partial pressure
- 2. Boyle's Law P = 1/V; this is what increases and decreases partial pressures as the lungs inflate and deflate with each breath

Initial state: no O₂ in solution

- 4. Henry's Law the amount of gas that will dissolve in a liquid is determined by the partial pressure of the gas and the gas's solubility in the liquid.
- O2 is not very soluble in water

At equilibrium, P_{O_2} in air and water is equal. Low O_2 solubility means concentrations are not equal.

When CO₂ is at equilibrium at the same partial pressure, more CO₂ dissolves.

• CO₂ has good solubility in water, therefore there will be a greater partial pressure of CO₂ in plasma than partial pressure of O₂.

Results:

- Blood must find a better mechanism for carrying O₂ to and from the tissues.
- CO₂ can be carried in the plasma, on RBCs or is converted to bicarbonate.

Composition of Alveolar Gas

- The atmosphere is mostly oxygen and nitrogen, while alveoli contain more carbon dioxide and water vapor
- These differences result from:
 - Gas exchanges in the lungs oxygen diffuses from the alveoli and carbon dioxide diffuses into the alveoli
 - Humidification of air by conducting passages
 - The mixing of alveolar gas that occurs with each breath

External Respiration: Pulmonary Gas Exchange

- Factors influencing the movement of oxygen and carbon dioxide across the respiratory membrane
 - Partial pressure gradients and gas solubilities
 - Matching of alveolar ventilation and pulmonary blood perfusion
 - Structural characteristics of the respiratory membrane

Partial Pressure Gradients and Gas Solubilities

- Although carbon dioxide has a lower partial pressure gradient:
 - It is 20 times more soluble in plasma than oxygen
 - It diffuses in equal amounts with oxygen

Partial Pressure Gradients

Surface Area and Thickness of the Respiratory Membrane

- Respiratory membranes:
 - Are only 0.5 to 1 μm thick, allowing for efficient gas exchange
 - Have a total surface area of about 60 m² (40 times that of one's skin)
 - Thicken if lungs become waterlogged and edematous, whereby gas exchange is inadequate and oxygen deprivation results
 - Decrease in surface area with emphysema, when walls of adjacent alveoli break through

Normal lung

Emphysema: destruction of alveoli means less surface area for gas exchange.

Asthma: increased airway resistance decreases airway ventilation.

Pulmonary edema: fluid in interstitial space increases diffusion distance. Arterial P_{CO_2} may be normal due to higher CO_2 solubility.

Diffusion of Gases

Fick's law of diffusion

$$V gas = \underbrace{A}_{T} x D x (P_1-P_2)$$

V gas = rate of diffusion

A = tissue area

T = tissue thickness

D = diffusion coefficient of gas

 P_1 - P_2 = difference in partial

pressure

Diffusing Capacity of the Lung

- Diffusing Capacity (D_L) lumps together:
 - Diffusivity
 - Area
 - Thickness

From Fick Equation:

$$D_{L} = \frac{A \cdot D}{T} = \frac{V_{gas}}{P_{1} - P_{2}}$$

Carbon Monoxide Diffusing Capacity (D_LCO)

- Advantage: virtually no back pressure.
 - Hb binding
 - low solubility

$$D_{L_{co}} = \frac{\dot{V}_{co}}{P_{A_{co}} - P_{c_{co}}} = \frac{\dot{V}_{co}}{P_{A_{co}} - 0} = \frac{\dot{V}_{co}}{P_{A_{co}}}$$

Single Breath D_LCO

- Single inspiration of a dilute CO mixture
- 10 second breath-hold
- Measure CO uptake using infrared detector to compare inspiratory and expiratory concentrations
- Normal Value: 25 ml / min / mmHg (increase w/ exercise)

Diffusing Capacity for Oxygen

Calculating D_LO₂ from D_LCO:

$$\frac{D_{L_{O_2}}}{D_{L_{CO}}} = \frac{\sqrt{28}}{\sqrt{32}} \bullet \frac{0.0244}{0.01836} = 1.23$$

$$D_{L_{o_2}} = 1.23 \bullet D_{L_{co}}$$

Diffusing Capacity of the Lung

Decreases with loss of surface area.

Decreases with increasing membrane thickness

Decreases with ventilation/perfusion mismatching

Internal Respiration

- The factors promoting gas exchange between systemic capillaries and tissue cells are the same as those acting in the lungs
 - The partial pressures and diffusion gradients are reversed
 - P_{O2} in tissue is always lower than in systemic arterial blood
 - $-P_{\rm O2}$ of venous blood draining tissues is 40 mm Hg and $P_{\rm CO2}$ is 45 mm Hg

Oxygen Transport

- Molecular oxygen is carried in the blood:
 - Bound to hemoglobin (Hb) within red blood cells
 - Dissolved in plasma

O₂ Transport

- Molecular oxygen in the blood is either dissolved in the plasma (1.5%) or bound to hemoglobin w/i the RBCs (98.5%).
- Each Hb can bind 4 molecules of O₂ and this binding is quite <u>reversible</u>.
- Hb containing bound O₂ is oxyhemoglobin and Hb w/o O₂ is deoxyhemoglobin.
- Carbon monoxide has an extremely high affinity for hemoglobin's oxygen binding site

O₂ Transport

 Loading and unloading of O₂ is given by a simple reversible equation:

$$HHb+O_2 \leftrightarrow HbO_2 + H^+$$

- O₂ binding is "cooperative"
 - The binding of the 1st O₂ molecule causes the Hb to change shape which makes it easier for the 2nd O₂ to bind. Binding of the 2nd O₂ makes it easier for the 3rd and binding of the 3rd makes it easier for the 4th.

O₂ Transport

- As O₂ loading proceeds, the affinity of Hb for O₂ ↑
- When Hb has 4 bound O₂ molecules it is saturated. When it has 1,2, or 3 it's unsaturated
- When the saturation of Hb is plotted against the Po₂, we get the oxygenhemoglobin dissociation curve.

Oxygen hemoglobin dissociation curve

- Hb-O₂ dissociation curve is sigmoidal.
- Hb is almost completely saturated at a Po₂ of 70mmHg.
- At pulmonary Po₂ of 104mmHg, Hb is completely saturated.
- Even at the tissue Po₂ of 40mmHg, Hb is still 75% saturated

UNDERSTANDING THE HB/O DISSOCIATION CURVE

- The plateau: Provides a margin of safety in the oxygen carrying capacity of the blood
- The steep portion: Small changes in Oxygen levels can cause significant changes in binding. This promotes release to the tissues.

HB/O DISSOCIATION CURVE

- Arterial blood with 15 gm/dl Hb contains 19.8 ml O2/dl, venous blood (75 % saturated) contains 15.2 O2 ml/dl.
- 4,6 ml O2 is delivered to tissues from each 100 ml blood, 250 ml delivered to the tissues / min.
- Amount of Oxygen delivered depend on Hb level.

HB/O DISSOCIATION CURVE

- Oxygen dissociation curve is the relation of the % saturation of Hb to the level of PO2 in mm Hg.
- At PO2 100 sat. is 97.5%, at PO2 40 sat. is 75%.

Factors affecting Hb affinity to O2

- Decreased affinity: shift of O2 dissociation curve to the right:
- 1. Increased temperature
- 2. Fall in pH (increased PCO2 Bohr effect).
- 3. Increased 2,3,diphosphoglycerate in red cells.

Increased affinity: Shift to the left:

- 1. Low temp.
- 2. High pH.
- 3. Decreased 2,3,diphosphoglycerate.
- PO₂ above 100 will not increase saturation.
- At PO2 60 Hb is 89% saturated.
- A steep drop of saturation below PO2 60.

Left Shift-clinical situations

- Alkalosis, hypocapnia, hypothermia
- Decreased DPG,
- CO poisoning
- Blood transfusion, fetal Hgb

Factors affecting 2,3 DPG:

- 1. Low pH (acidosis) decreases 2,3 DPG.
- 2. Thyroid hormone, growth hormone, androgen leads to increased 2,3 DPG concentration.
- 3. Exercise increases 2,3 DPG after 60 min.
- 4. High altitude increases 2,3 DPG releasing O2.

Cont.

- 5. Hb F (alpha2 gama2) poor binding to 2,3 DPG leading to increased affinity to O2 and more O2 moves from mother to fetus.
- 6. Anemia can increase 2,3 DPG.

Myoglobin

- It is an iron containing pigment in skeletal muscles.
- Binds one molecule of O2.
- Its curve to the left of Hb so it takes O2 from Hb.

<u>P50:</u>

- It is the partial pressure of O2 at which Hb is 50 % saturated. It is increased by:
- 1. Thyroid hormones, growth H. & androgens.
- 2. Exercise.
- 3. High altitude.
- 4. Increased temp.
- 5. Decreased pH.
- The higher the P50, the lower is the Hb affinity for O2.

Agents which shift the Hb/O Dissociation curve: The Bohr Effect

Carbon Dioxide Transport

- Carbon dioxide is transported in the blood in three forms
 - Dissolved in plasma 7 to 10%
 - Chemically bound to hemoglobin 20% is carried in RBCs as carbaminohemoglobin
 - Bicarbonate ion in plasma 70% is transported as bicarbonate (HCO₃⁻)

 Carbon dioxide diffuses into RBCs and combines with water to form carbonic acid (H₂CO₃), which quickly dissociates into hydrogen ions and bicarbonate ions

CO ₂	+	H ₂ O	\leftrightarrow	H ₂ CO ₃	\leftrightarrow	H+	+	HCO ₃ -
Carbon dioxide		Water		Carbonic acid		Hydrogen ion		Bicarbonat e ion

 In RBCs, carbonic anhydrase reversibly catalyzes the conversion of carbon dioxide and water to carbonic acid

(a) Oxygen release and carbon dioxide pickup at the tissues

- At the tissues:
 - Bicarbonate quickly diffuses from RBCs into the plasma
 - The chloride shift to counterbalance the outrush of negative bicarbonate ions from the RBCs, chloride ions (Cl⁻) move from the plasma into the erythrocytes

- At the lungs, these processes are reversed
 - Bicarbonate ions move into the RBCs and bind with hydrogen ions to form carbonic acid
 - Carbonic acid is then split by carbonic anhydrase to release carbon dioxide and water
 - Carbon dioxide then diffuses from the blood into the alveoli

(b) Oxygen pickup and carbon dioxide release in the lungs

Haldane Effect

- The amount of carbon dioxide transported is markedly affected by the P_{O2}
- Haldane Effect: Increasing O₂-saturation reduces CO₂ content and shifts the CO₂ dissociation curve to right. This is because, increasing P_{O2} leads to
 - Decrease in the formation of carbamino compound.
 - Release of H⁺ ions from the hemoglobin and resulting in dehydration of HCO₃⁻.
 These changes take place in the lungs .

Carbon Dioxide Dissociation Curve

Over the normal physiological range ($P_{CO2} = 30$ to 55 mmHg and $P_{O2} = 40$ to 100 mmHg), the CO_2 equilibrium curve is nearly linear. But, O_2 equilibrium curve is highly nonlinear.