The Digestive System

Lecture 3

Neutralisation of Acid in Duodenum

 Bicarbonate (HCO₃) secretion from Brunner's Gland duct cells (submucosal glands)

$$H^+ + HCO_3^- \Leftrightarrow H_2CO_3 \Leftrightarrow H_2O + CO_2$$

Control of Duodenal HCO₃ Secretion

Acid in duodenum triggers...

- A Long (vagal) & short (ENS) reflexes \Rightarrow HCO₃ secretion
- B Release of secretin from S cells \Rightarrow HCO₃ secretion
- Secretin ⇒ HCO₃ secretion from pancreas & liver
- Acid neutralisation ⇒ inhibits secretin release (negative feedback control)

Exocrine Pancreas

Responsible for digestive function of pancreas

· Anatomical Structure

Function

Secretion of bicarbonate by duct cells Secretion of digestive enzymes by acinar cells

Structure of the pancreas

Sphincter of Oddi

Duodenum

Gall bladder

Common bile duct from gallbladder

Composition and Function of Pancreatic Juice

- Water solution of enzymes and electrolytes (primarily HCO₃)
 - Neutralizes acid chyme
 - Provides optimal environment for pancreatic enzymes
- Enzymes are released in inactive form and activated in the duodenum

Composition and Function of Pancreatic Juice

- Examples include
 - Trypsinogen is activated to trypsin
 - Procarboxypeptidase is activated to carboxypeptidase
- Active enzymes secreted
 - Amylase, lipases, and nucleases
 - These enzymes require ions or bile for optimal activity

Zymogens

- Acinar cells contain digestive enzymes stored as inactive zymogen granules
- Prevents autodigestion of pancreas
- Enterokinase (bound to brush border of duodenal enterocytes) converts trypsinogen to trypsin
- Trypsin converts all other zymogens to active forms

Categories of Pancreatic Enzymes

Proteases Cleave peptide bonds

Nucleases Hydrolyse DNA/RNA

Elastases Collagen digestion

Phospholipases Phospholipids to fatty acids

Lipases Triglycerides to fatty acids+ glycerol

α-Amylase Starch to maltose + glucose

Control of Pancreatic Function

- · Bicarbonate secretion stimulated by secretin
- Secretin released in response to acid in duodenum
- Zymogen secretion stimulated by cholecystokinin (CCK)
- CCK released in response to fat/amino acids in duodenum
- · Also under neural control (vagal/local reflexes)
 - triggered by arrival of organic nutrients in duodenum

Control of Pancreatic Function

Structure/Function of Liver

Microscopic Anatomy of the Liver

- Hexagonal-shaped liver lobules are the structural and functional units of the liver
 - Composed of hepatocyte (liver cell) plates radiating outward from a central vein
 - Portal triads are found at each of the six corners of each liver lobule
- Portal triads consist of a bile duct and
 - Hepatic artery supplies oxygen-rich blood to the liver
 - Hepatic portal vein carries venous blood with nutrients from digestive viscera

Microscopic Anatomy of the Liver

- Liver sinusoids enlarged, leaky capillaries located between hepatic plates
- Kupffer cells hepatic macrophages found in liver sinusoids
- Hepatocytes' functions include:
 - Production of bile
 - Processing bloodborne nutrients
 - Storage of fat-soluble vitamins
 - Detoxification
- Secreted bile flows between hepatocytes toward the bile ducts in the portal triads

Function of Liver

Alimentary role of liver = production & secretion of bile Six components of bile:

Solubilise fat

Synthesised in liver

- (1) Bile acids
- (2) Lecithin
- (3) Cholesterol
- (4) Bile Pigments Bilirubin (from haemoglobin)
- (5) Toxic Metals Detoxified in liver
- (6) Bicarbonate Neutralisation of acid chyme
- (1) \Rightarrow (5) secreted by hepatocytes (liver cells) HCO₃ secreted by duct cells

Composition of Bile

- A yellow-green, alkaline solution containing bile salts, bile pigments, cholesterol, neutral fats, phospholipids, and electrolytes
- Bile salts are cholesterol derivatives that:
 - Emulsify fat
 - Facilitate fat and cholesterol absorption
 - Help solubilize cholesterol
- Enterohepatic circulation recycles bile salts
- The chief bile pigment is bilirubin, a waste product of heme

Bile Pigments

- Breakdown products of haemoglobin from old/damaged erythrocytes
- Bilirubin (predominant bile pigment) extracted from blood by hepatocytes and secreted into bile
 - ⇒ yellow bile
- Bilirubin modified by bacterial enzymes ⇒ brown pigments
 - ⇒ brown faeces
- · Reabsorbed bilirubin excreted in urine
 - ⇒ yellow urine

Bile Acids

- Synthesised in liver from cholesterol (0.5g/day)
- Before secretion, bile acids conjugated with glycine or taurine ⇒ Bile Salts (↑ solubility)
- Secreted bile salts recycled via enterohepatic circulation

Liver ⇒ bile duct ⇒ duodenum ⇒ ileum ⇒ hepatic portal vein ⇒ liver etc...

Control of Bile Secretion

Sphincter of Oddi

- Controls release of bile and pancreatic juice into duodenum
- When contracted (closed) ⇒ bile forced back into gallbladder
- Gallbladder concentrates bile 5-20 times (absorbs Na⁺ & H₂O)
- Fat in duodenum ⇒ release of CCK
 CCK ⇒ (A) Sphincter of Oddi relaxes
 (B) Gallbladder contracts
- Discharge of bile into duodenum ⇒ fat solubilisation
 - CCK ⇒ Pancreatic enzyme secretion ⇒ Bile secretion

Summary of Actions of Secretin & CCK

Secretin

- Acid in duodenum

 U
 Secretin
- ↓ Gastric acid secretion
- ↓ Gastric emptying
- ↑ Duodenal HCO₃ secretion
- ↑ Pancreatic HCO₃ secretion
- ↑ Bile duct HCO₃ secretion

Cholecystokinin

Fat/amino acids in duodenum

CCK

- ↓ Gastric emptying
- 1 Pancreatic enzyme secretion

Gallbladder contraction

Relaxation of Sphincter of Oddi

Neutralisation

Digestion

Homeostatic Imbalance

- Gallstones crystallization of cholesterol which can obstruct the flow of bile
- Current treatments include: dissolving the crystals with drugs, pulverizing them with ultrasound, vaporizing them with lasers, and surgical removal of the gallbladder
- Obstructive jaundice yellowish skin caused by bile pigments deposited in the skin
 - Due to blocked bile ducts